
Chemical Engineering Journal 86 (2002) 133–138

On the risk of cracking in clay drying
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Abstract

Based on the assumptions related to porous media, the governing equations of mass transfer and static equilibrium are presented. The
mechanical stresses generated by the drying strains are expressed according to the linear-elastic model. The von Mises cracking criterion
is introduced in order to locate the area where risk for cracking occurs. The model is applied to the drying of Kaolin clay. Moisture and
solid displacements results as well as evolutions of the criterion are exposed. The danger of cracking is the highest at the beginning of
the drying, since the yield stress is low. The criterion reaches its peak value during the first hour and at a particular point, located on the
surface, exactly in-between two corners. Moisture evolution has been measured by means of nuclear magnetic resonance (NMR) imaging,
during the drying of a piece of Kaolin clay. The diffusion coefficient is evaluated from these experimental results. Finally, the model is
used to reproduce them. © 2002 Published by Elsevier Science B.V.
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1. Introduction

When the drying process takes place with shrinkage,
gradients of moisture content and solid displacement in
the material will lead to drying-induced stresses. Con-
trolling these stresses is important since they can lead to
undesired deformations and/or cracks affecting the product
quality.

Mixture of clay and water is considered in a first
assumption as perfectly elastic, because of the lack of data
about the rheological properties of clay material. A model
coupling mass transfer with stress balance, can permit to
calculate the amount of stresses, according to several phys-
ical properties determined experimentally. The Huber–von
Mises criterion is used to anticipate the crack appearance.

After the presentation of the mathematical model, a
numerical formulation using the finite element method is
developed and the results applied to clay brick drying are
exposed and analysed. Cracking criterion evolutions allow
to understand cracking occurrence. Finally, a validation of
the diffusion model is given, by means of a comparison
between the simulated and experimental data.
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2. The mathematical model

2.1. Assumptions

• Clay is a solid porous medium (density ρs) which can
hold moisture (density ρm).

• Moisture may be present in clay indifferently as vapor,
free or bound liquid.

• Temperature of clay form is uniform and constant.
• The effect of gravity is neglected.
• Clay material is isotropic.
• Mixture of clay and moisture shows a perfectly elastic

behavior within the moisture range (0–0.4 g/g). This
choice is a limiting assumption.

2.2. The diffusion model

As a shrinking medium, clay shows a movement of its
solid skeleton while water moves through it. Using the
moisture content M (kg water/kg dry solid) as state vari-
able, moisture transport during clay drying is described by
Eq. (1) where vs (m/s) denotes the solid velocity, D (m2/s)
the diffusion coefficient of water in clay and J (kg/m2 s) the
moisture flux at the boundary surfaces exposed to drying
conditions [1–4]:

∂M

∂t
+ vs∇M = 1

ρs
∇ρsD∇M, in Ω

J = −ρsD∇Mn, in Γ
(1)
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Nomenclature

D diffusion coefficient (m2/s)
E Young modulus (N/m2)
F external stress (N/m2)
J prescribed drying flux (kg/m2 s)
K bulk modulus (N/m2)
M dry basis moisture content (kg/kg)
n surface normal vector
v velocity (m/s)
w displacement vector (m)
x spatial position (m)
z solid-attached position (m)

Greek symbols
ε total strain tensor
εe elastic strain tensor
εM strain tensor due to moisture removal
εσ mechanical strain tensor
λ, µ Lamé coefficients (N/m2)
ν Poisson ratio
ρ apparent bulk mass density (kg/m3)
σ stress tensor (N/m2)
ψ shrinkage factor

where Ω is the space domain occupied by the medium
and Γ its surface. In Eq. (1), coefficient D is defined in a
solid-attached frame using the following Eq. (2) [3]:

ρmvm = ρmvs − ρsD∇M (2)

The Lagrangian description has been applied to (1) in order
to have a fixed computational domain [2,3,5]. Transforma-
tion rules [6] permit to switch from space co-ordinate sys-
tem x(t) to solid-attached co-ordinates z = x(0) and elimi-
nate the solid movement term, by means of the deformation
tensor (∇zx)C. Deduced from the law of mass conservation,
the following relation defines the shrinkage factor ψ as
inverse of the volume ratio:

det(∇zx)C = dV

dV0
= ρ0

s

ρs
= ψ−1 (3)

At this stage, an additional assumption is taken:
deformation is only due to moisture removal, that is to
say deformations due to mechanical stresses are smaller
and therefore neglected. Hence, deformations are purely
volumetric and (∇zx)C is a diagonal tensor. Furthermore,
because of isotropy, (∇zx)C has equal diagonal elements:

(∇zx)C = ψ−1/3I (4)

After transformation and applying (4), Eq. (1) reads [1]:

∂M

∂t

∣∣∣∣
z

+ ∇z(D∇zM), inΩ

−ρ0
sD∇zMn = J, inΓ

(5)

where D = ψ2/3D and J = ψ−2/3J . Adding the initial
condition, M(z, t = 0) = M0, z ∈ Ω , Eq. (5) correspond
to the mathematical formulation of the diffusion problem.

2.3. The stress model

Let ε = ∇w+∇wC be the total strain tensor, function of
the solid displacements w = x(t)− z. With the assumption
of a constant and uniform temperature, the total strain is
reduced to the sum of the elastic strain and the shrinkage
due to moisture [7], given as follows:

ε = εσ + εM (6)

The assumption of local isotropic shrinkage reads εM =
εMI.

For an isotropic material, Hook’s law describes the elastic
strain as follows:

εσ = εe = 1 + v

E
σ − v

E
Tr(σ)I (7)

where E and ν are the moisture-dependent elastic properties
of the mixture.

The balance of momentum for a static equilibrium reads:

∇σ + F = 0

By assumption, no external forces are applied to the clay
body.

∇σ = 0 (8)

On Γ , the boundary condition reads:

σn = 0

Inverting (7) and introducing (6), the momentum balance (8)
and the boundary condition can be written in term of strains:

∇(λTr(ε)I + 2µε − 3KεMI) = 0, in Ω
(λTr(ε)I + 2µε − 3KεMI)n = 0, in Γ

(9)

where λ, µ, and K are properties of the mixture, functions
of E and v (Eq. (9)) correspond to the mathematical formu-
lation of the stress problem and its solution consists of the
displacement w at the instant t. To solve this set of Eq. (9),
the moisture content need to be known everywhere, so the
diffusion problem should be solved at first.

3. Simulation

Based on the previous model, simulations of clay brick
drying have been ran using the finite element method, in
order to study the crack occurrence.

3.1. Problem configuration

We apply the mathematical model to a Kaolin clay brick
submitted to drying with an initial moisture content of
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Fig. 1. Spatial configuration.

0.4 g/g. Eqs. (5) and (9) are solved on a two-dimensional
mesh representing the quarter (0.05 cm × 0.05 cm) of a
cross-section of the clay brick, as shown on Fig. 1. Hence,
the brick is assumed to have an infinite length. The mesh
consists of 80 × 80 rectangular elements.

3.2. Physical properties

Moisture-dependent physical properties needed by the
model were obtained experimentally [3,8].

The shrinkage factor ψ(M) defined in Eq. (3), decreases
linearly from M = 0.4 g/g to a critical moisture content
Mc = 0.27 g/g and then remains constant. Indeed, clay dry-
ing consists in two phases: the shrinkage forM > Mc where
solid particles slip into a more compact arrangement [9], and
the non-shrinking phase for M < Mc where solid density
stays nearly constant.

The diffusion coefficient D for Kaolin clay has been
determined experimentally from one-dimensional dry-
ing experiments. Experimental data and the approxima-
tion of D using artificial neuronal network [1] are given
Fig. 2. The prescribed drying flux J is derived from drying
curves.

Compression tests at different moisture contents have led
to an approximation of the Young’s modulus E (Fig. 3).
Poisson’s coefficient is taken equal to 0.45.

Fig. 2. Diffusion coefficient for Kaolin clay at 25 ◦C, obtained from
one-dimensional NMR profiles.

Fig. 3. Young’s modulus for Kaolin clay [3].

4. Results and discussions

Numerical results consist firstly of the moisture content
evolution inside the two-dimensional section, and sec-
ondly of displacements of the material points at different
time-steps. From the displacements, total and elastic strains
and thus stresses are derived, which permits to calculate a
cracking criterion. On Figs. 4–10, the legend refers to the
drying hours.

4.1. Moisture and displacements

Fig. 4 shows moisture evolution along the diagonal of
the slice. During the first drying stage moisture content

Fig. 4. Moisture evolution along r-direction (at different drying hours).
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Fig. 5. Displacements of the edge x(t = 0) = 0.05 (at different drying
hours).

Fig. 6. Stress criterion along the r-direction (at different drying hours).

Fig. 7. Yield stress for Kaolin clay.

decreases fast, especially in the corner where evapora-
tion surface is important. We notice a slope break around
0.1 kg/kg, due to the evolution of D (Fig. 2). After about l h
of drying, a penetrating drying front appears inside the ma-
terial, consequence of the increase of D at very low moisture
contents (predominant vapor flow inside the pores).

Fig. 8. Cracking criterion along the x-direction (drying times in hours).

Fig. 9. Cracking criterion along the y-direction (drying times in hours).

Fig. 5 shows the displacement of the edge exposed to
drying air. Because of its high drying rate, the corner under-
goes a large strain at the beginning. It induces a deformation
gradient from y = 0–0.05 and until 5 h of drying. After
this time, solid movement stops and the material returned
to its initial shape. Indeed, below Mc = 0.27 g/g, volumet-
ric strain ceases and, as a consequence of the linear elastic
assumption, stress and elastic strain disappear: all solid
particles have undergone the same strain.

4.2. Stress analysis

The conditions that lead to cracking can be determined
by using a specific criterion. Since the crack appearance is
independent of the hydrostatic pressure, we consider only
the deviatoric part of the stress tensor, written down σ̄ . Then,
because of isotropic behaviour, the second invariant of σ̄ is
used. Hence, we will first focus on the following expression,
called here the “stress criterion” and corresponding to the
second invariant of the deviatoric part of the stress tensor:
√

3
2 Tr(σ̄ 2)

Fig. 6 shows the evolution of the stress criterion along
the diagonal r of the section. Each profile shows a peak
corresponding to the location where M = Mc, that is to
say where strains have reached a maximum value (end of
the shrinking phase). For each profile, above and below
M = Mc, the stress criterion is lower: above Mc (inner
part), displacements and strains have not yet reached the
maximum. Below Mc (outer part) total strain becomes
uniform which induces a decrease of stress.

The Huber–von Mises yield criterion is proposed for
problems in which frictions are not important [10]. This cri-
terion states that in order to prevent cracking the following
condition have to be satisfied:

Y −
√

3
2 Tr(σ̄ 2) > 0 (10)

where Y(M) is the moisture-dependant yield stress, limit
of the elastic behaviour of the material when submitted
to a uniaxial tension. For Kaolin, Y has been determined
experimentally by Ketelaars (Fig. 7).
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Fig. 10. Cracking criterion along the r-direction (drying times in hours).

Figs. 8–10 show the evolution of the cracking criterion
along the x-, y- and r-directions. Danger for cracking appears
when the criterion is negative and increases with its absolute
value. We notice from Figs. 8 and 9 that maximum danger
occurs at x = 0.05 and y = 0, at time 0.56 h. The risk
remains important in this location during approximately the
first 1.5 h of drying. Danger is located especially on the edge
(Fig. 8; x = 0.05) around the axis of symmetry (y = 0) of
the brick (Fig. 9). As shown in Fig. 10, the criterion is higher
inside the slice. After 1.5 h of drying, risk for cracking is
low everywhere.

The location of danger results from the drying rate differ-
ence between the corner and the middle of the edge, which
induces important strain gradients along the edge (Fig. 5).
Thus, the area around x = 0.05 and y = 0 undergoes large
tensile stress. Besides, at the beginning of the drying the
yield stress is low because of the high moisture content.
Combining this large tensile stress with the low yield stress,
the danger for cracking becomes important.

5. Experimental approach

The model and crack anticipation need to be validated by
means of experiments. We present a result corresponding to
the diffusion problem.

5.1. 2-Dimensional moisture measurements
using NMR imaging

A drying experiment using nuclear magnetic resonance
(NMR) has been carried out on a Kaolin clay sample. With

Fig. 11. NMR imaging of clay drying (time: 0–1.5–3–5–10 h; drying air specifications: 0% RH, 1.7 m/s, room temperature (19 ◦C).

the objective to reproduce the corner of a brick, precau-
tions are taken to ensure that moisture movement occurs
in two dimensions. The sample has a right-angled triangle
shape, as it can be noticed in Fig. 11, and both upper edges
are identically exposed to a longitudinal drying airflow. The
experimental data consist of the evolution with time of a
two-dimensional moisture field.

Fig. 11 shows the evolution of moisture qualitatively; light
color corresponding to high moisture contents and dark to
the absence of moisture. Both right and left sides of the
sample have the same symmetric behavior. It appears clearly
that the moisture in the corner decreases faster than along
the edge. Since moisture content is above 0.27 g/g, it induces
strain gradients between the corner and the middle of the
edge, involving stresses. Differential strains on boundaries
can be noticed on the first pictures.

5.2. Diffusion coefficient from a two-dimensional
moisture evolution

The diffusion coefficient defined in system (1) has been
calculated from the results of the two-dimensional experi-
ment (Fig. 11), using a method based on the assumption that
D depends only on the moisture content. Flux and gradients
are obtained along iso-moisture lines in order to calculate D.
Results are showed in Fig. 12. The range of moisture con-
tent is reduced for two reasons. First, the shrinkage is not
taken into account for the calculations and second profiles
measured at the beginning of the drying are too flat to get
accurate gradients.

The coefficient used for the simulation (Fig. 2) is very
near to this result in the moisture range (0–0.12 g/g).
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Fig. 12. Diffusion coefficient from two-dimensional moisture profile
evolution.

Fig. 13. Comparison between theory (lines) and experience (points). Profile
times: 42, 98, 182, 322, 504 min.

We notice that D from the two-dimensional drying is lower,
what is explained by the difference of temperature between
both experiments (about 5 ◦C). The agreement permits to
validate the assumption of isotropy. Besides, results from the
two-dimensional test are more accurate, because the method
induces less averages than the one-dimensional experiment,
by taking into account the boundary effects.

5.3. Comparison between the model
and experiment

The parameters have been tuned to study how far the
model can reproduce the experiment, and be validated by this
way. Boundary drying fluxes have been found by integrating
moisture profiles along the axis of symmetry of the sample,
where it is assumed that no perpendicular gradients take
place. Fig. 13 shows the evolution of moisture content along
the y-axis of the slice, plotted in a fixed unit. The experiment
is well reproduced by the model, all along the drying stage.
Low experimental points near the origin (y = 0) correspond
to inaccuracies of the NMR signal, far from the center of
the magnets. These errors cannot be seen clearly on Fig. 11,
because of some data averaging.

6. Conclusions

From a mathematical model including moisture transport
in porous medium and balance of momentum for static
equilibrium, a numerical solution is obtained by means
of the finite element method. Both, the moisture content
evolution and solid displacements are calculated all over
a cross-section of a Kaolin clay brick. Since the material
is assumed to be perfectly elastic, strains and stresses are
obtained and the Huber–von Mises cracking criterion is
analyzed. Maximum risk for cracking occurs at the surface
around the axe of symmetry of the brick and, according to
the drying conditions applied, after 0.56 h of drying.

A validation of the diffusion model is given, based on
the calculation of the diffusion coefficient from a two-
dimensional moisture evolution measured by NMR. A good
agreement has been found between the coefficient from the
one-dimensional drying tests and from the two-dimensional
NMR experiment, for the non-shrinking phase. We aim to
generalize these two-dimensional calculations for the whole
drying process and to increase the accuracy of the method,
which could be applied favorably to products with a more
complex shape.

The experimental study of crack appearance is now in
progress, in order to estimate the stress model and the use
of the cracking criterion. For the improvement of the stress
model, more rheological properties, such as viscosity, need
to be known all over the moisture range. This supposes to
realise the mechanical tests before simulating the viscous
behavior.
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